

Build an Al Private/Sovereign Cloud with Kyndryl and Red Hat OpenShift Al

Pietro Iannucci | Principal Architect, Director Private Cloud architectures, Kyndryl

Agenda Market Insight, needs, challenges and opportunities How Red Hat AI can help How Kyndryl can help kyndryl.

Al/GenAl market perspective

Transition to strategic AI investments impact

- Applications
- Platforms
- Data
- Infrastructure

Al is the new strategic workload

Increasing infrastructure complexity

App ecosystem shift to Agentic Al

\$749B

anticipated spend on Al technology by 2028¹

\$304B

Spend of GenAl technology by 2028¹

Drivers

Efficiency and productivity

· Automate repetitive tasks and streamline workflows

Customer experience

· Automate and personalize customer interactions

Innovation

· Accelerate product development and focus on innovation

Cost

Optimize processes, automate tasks and provide actionable insights

Decision-making

Provide data-driven insights that enhance decision-making processes

1. IDC: WW GenAl forecast

kyndryl.

3

Major Al/GenAl use cases customers are implementing

Finance

- Fraud detection
- Risk analysis (*)
- Know your customer
- Anti-money laundering
- Personalized Banking (*)
- Investments insight

Healthcare

- Medical image analysis
- Drug discovery (*)
- Next-generation DNA/RNA sequencing
- Molecule simulation
- Clinical trial data analysis (*)

Retail

- Self-checkout
- Loss prevention
- Video surveillance (*)
- Personalized shopping
- Automated catalogs creation
- Automated price optimization (*)

Telecom

- Virtual assistants
- Network performance tuning
- Remote support (*)

Media and Entertainment

- Character development (*)
- Video editing and image creation
- Style augmentation
- Artistic content generation

Manufacturing

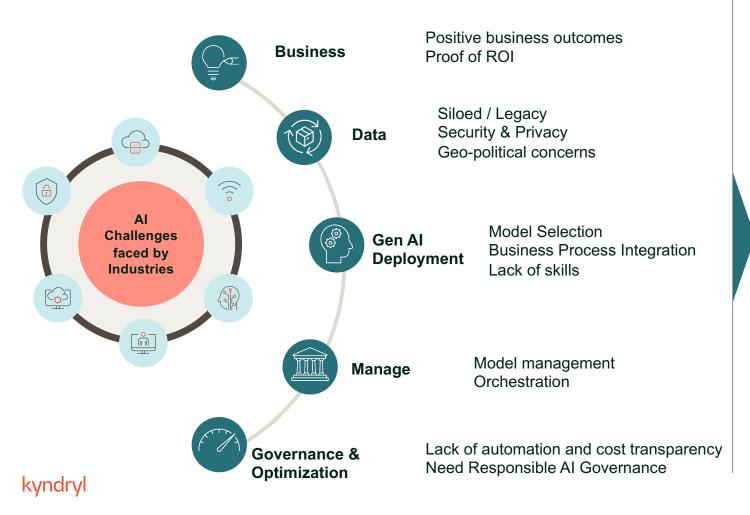
- Factory simulation
- Product design (*)
- Predictive maintenance
- Manufacturing safety
- Visual inspection for quality control
- Delivery robots
- Digital twins (*)
- Self-driving vehicles

Public Sector

- Document summarization (*)
- Audit compliance (*)
- Virtual assistants

Energy

- Knowledge base QA (*)
- Predictive maintenance
- Customer service



(*) Since these use cases may use proprietary and potentially critical client data during the model's training phase or to populate a RAG database, they are among the best candidates to be implemented in an AI infrastructure on a Private Cloud

4

Industry challenges and opportunities for innovation

Challenges adopting Al

Opportunities

Provide Ready to implement Industry Use Cases, leveraging Edge & AI capabilities

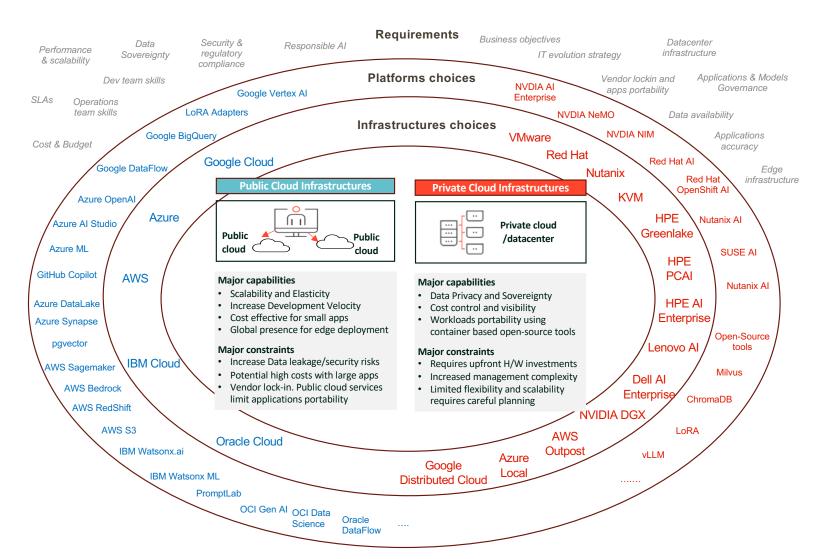
Al as a Service, with GPUs at Central DC or at Edge, Al Platform, complete with Security and Governance Framework

Data Preparation, Data management and Data Governance as a Service

Model Selection, development and training. **Skills for development** and human feedback.

Al Orchestration, Observability (AlOps) and Governance

Data & Al **Security**, Regulatory Compliance and **Sovereignty**


Major challenges in implementing Al/GenAl applications

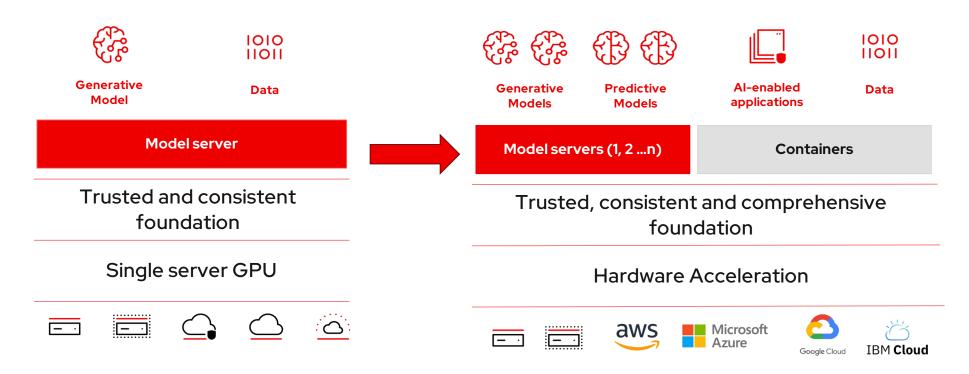
Top concerns from customers

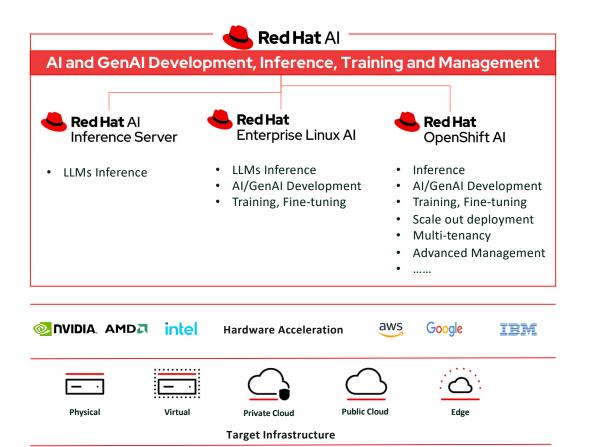
- Which Public or Private cloud infrastructures best address my needs in terms of
 - Data security, privacy and compliance, Sovereignty
 - Scalability, Flexibility and SLAs
 - Infrastructure costs and TCO
- Which Al/GenAl platform or services allows me to
 - Minimize the skills needed to develop and run my Al/GenAl applications
 - Expedite the development process and reduce the costs of running applications in production
 - Avoid vendor lock-in and allow to move my applications to any public or private cloud infrastructure without any or minimal code changes

Selecting the right infrastructure/platform for AI/GenAI workloads may be challenging

- No solution fits all
- All Al/GenAl infrastructures and platforms provide
 - Strong security
 - Support for the most common Al/GenAl tools and frameworks
 - Robustness and resiliency
- · Right choice depends on
 - Applications architecture
 - Function and non-functional requirements
 - Customer IT strategy
 - Customer skills
 - and many other factors

Examples of Al/GenAl applications mapping to different private/public infrastructures and platforms


Use case	Training	Fine-tuning	Inference
Call-center Chatbot	Platform: OpenAl, or Azure OpenAl Models/services: No need for training, use pre-trained models like GPT-3, o-mini, etc. Why: Existing LLMs already provide NLP and context aware conversational capabilities	Platform: OpenAI, or Azure OpenAI Models/services: OpenAI fine-tuning APIs Why require little customization for the specific domain Does not use sensitive data for fine-tuning	Platform: OpenAl, or Azure OpenAl Models/services: OpenAl inference APIs Why Does not use sensitive data Can easily scale up/down based on demand
Legal documents summarizer	Platform: On-premises OpenShift with GPUs Models/services: No need for training use pre-trained models like LLama3, etc. Why: Existing LLMs already provide NLP and documents summarization capabilities	Platform: On-premises OpenShift with GPUs Models/services: Parameter-Efficient Fine-Tuning (PEFT) with LoRA, adapters, or prompt tuning Why: Model tuning may require use of sensitive data and data privacy protection	Platform: On-premises OpenShift with GPUs Models/services: NVIDIA NIM for Lllama3 Why: Inference phase may handle sensitive data that might be ingested to the system
Marketing campaign generation	Platform: AWS, Azure, GCP Models/Services: No need for training Llama 3, Stable Diffusion Why: Existing Llama and Stable-diffusion models already provide NLP, text and images generation capabilities	Platform: AWS, Azure, GCP Models/: Llama 3, Stable Diffusion Services: AWS Sagemaker training, Azure Machine Learning Training, Vertex AI Training Why It may require significant resources to fine-tune the model to the specific domain Marketing data are in general not very sensitive	Platform: AWS, Azure, GCP Models/: Llama 3, Stable Diffusion Services: AWS Sagemaker endpoint, Azure Machine Learning endpoint, Vertex AI Endpoint Why Does not use sensitive data Can easily scale up/down based on demand
Predictive maintenance	Platform: On-premises OpenShift with GPUs Models: Random Forest, SVM, Logistic regression, RNN, XGBoost Services: Pythorch/Tensorflow training, Scikit-learn Why: Models use sensor data or image analysis, that might not require too many GPU resources for training. Training data might be sensitive and contain industrial secrets that should be protected		Platform: OpenShift single node on bare-metal with GPUs Models: Random Forest, SVM, Logistic regression, RNN, Services: Single node OpenShift, K3s, KServe Why: Models need to run in edge sites, gathering sensitive data that need to be processed immediately close to the source


Agenda Market Insight, needs, challenges and opportunities How Red Hat AI can help How Kyndryl can help kyndryl.

Red Hat AI overview

From single server deployments to highly scaled-out platform architectures

Red Hat AI overview

A suite of products to build and run AI and Gen AI solutions from the PoC phase to the full production deployment

- Red Hat Al Inference Server provides an optimized Inference Engine based on vLLM to run Al/GenAl apps
- Red Hat Enterprise Linux AI adds model development, training and tuning capabilities to "Red Hat AI Inference Server" ones
- Red Hat OpenShift AI includes capabilities of "Red Hat Enterprise Linux AI" and "Red Hat AI Inference Server".
 - Built on OpenShift Container Platform
 - provides the most advanced capabilities for Developing, training, fine-tuning, run and manage large scale AI/GenAI applications in an enterprisegrade production environment

Red Hat AI major features

- Red Hat AI Enterprise Linux AI +
- Supports AI and Generative AI models
- Based on "Open Data Hub" open-source, includes most popular open-source tools for training, serving and monitoring AI/GenAI models
- Based on OpenShift Container platform, it guarantees best SLOs for multi-tenant and large-scale AI/GenAI applications deployments

- LLM Inference Engine
- Powered by vLLM, most powerful Linux engine for GenAl Inference
- increase inference efficiency with LLM Compressor capabilities
- Single Server deployment

- Supports many different Generative Al models
- Provides access to Granite models
- Provides access to InstructLab
- Single server or VM deployments
- includes RHEL image mode

Model Training

- Collaboration projects
- JupyterLab
- Out-of-the-box Notebook Image
- Custom Notebook Image
- PyTorch
- Tensorflow
- · Version control (Git)
- Package Management (Anaconda)

Model Serving

- KServe
- ModelMesh
- · OpenVINO Model Server
- Caikit
- TGIS
- vLLM
- Custom runtimes

Distributed Training

- CodeFlare stack
- NVIDIA TAO Toolkit
- · Watsonx.ai Tuning Studio

GPU/Accelerators

- NVIDIA, Intel, AMD
- NVIDIA NIM, NVIDIA Rapids
- Intel Al Analytics

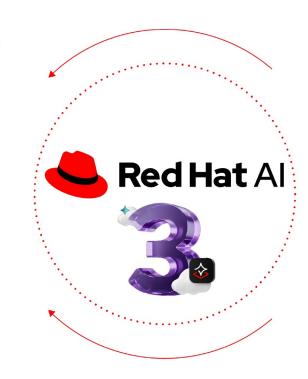
MLOps/Workflows

- Data Science Pipelines (KubeFlow)
- GitOps

Monitoring and Governance

- Model Mesh metrics
- Prometheus
- OOB performance & Ops metrics
- Pachiderm

RedHat OpenShift AI new/enhanced features


Announcements

Flexible and Efficient Inference

- ► GA distributed inference (Ilm-d)
- ▶ New validated and optimized models
- vLLM enhancements
- ► LLM Compressor GA

Connecting Models to Data

- Modular and extensible approach for: data ingestion, synthetic data generation, tuning, evaluations.
- ▶ RAG enhancements & partner integrations
- ► Continual Post Training Algorithm
- ► Feature Store GA

Agentic Al

- ▶ Al experiences: Al hub and gen Al studio
- Model Context Protocol support & MCP
 Server access in gen Al studio
- ► Llama Stack API integration

Al Platform

- ▶ Model catalog and registry GA
- Model as a Service provider enhancements and API Mgt integration
- ► GPU as a Service enhancements

Single platform to run any model, on any accelerator, on any cloud

RedHat OpenShift AI high level architecture

Based on the open-source Open Data Hub project provides

Al/ML modeling and visualization tools

- JupyterLab UI with prebuilt notebook images and Python libraries
- TensorFlow, PyTorch,
 CUDA, Kubeflow, Anaconda (optional)
- Parallelized and distributed workloads (KubeRay, CodeFlare)
- Data drift and Bias detection
- Efficient fine-tuning with lowrank adapters (LoRA)

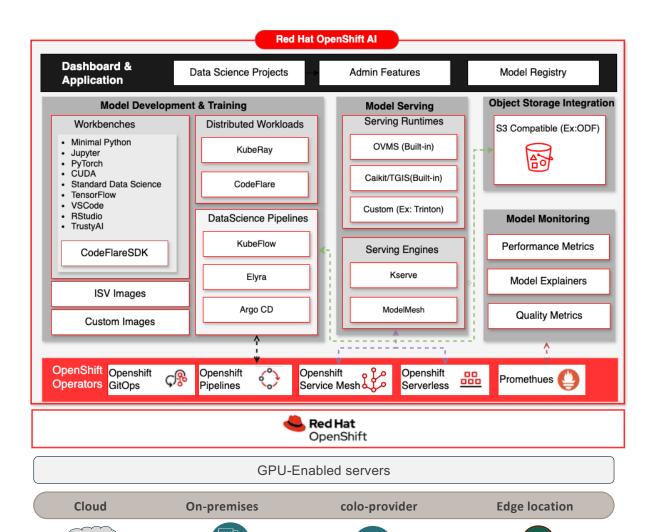
Model serving and monitoring

- Model serving (KServe with user interface), vLLM serving runtime
- Model monitoring,
- OpenShift Source-to-Image (S2I),
- Red Hat OpenShift API
 Management (optional add-on),
- Intel Distribution of OpenVINO toolkit (*)
- Support for NVIDIA NIM

Data engineering

Starburst (optional), Pachyderm (optional)

Data ingestion and storage


- Model registry, Red Hat AMQ (optional add-on);
- Amazon Simple Storage Service (S3)

Data science pipelines

Kubeflow Pipelines to chain together processes like data preparation, build models, and serve models

GPU support

- NVIDIA GPUs
- AMD GPUs
- Intel GPUs (including Xeon, Gaudi, and Intel Data Center GPU Flex Series))

How Red Hat OpenShift AI address the needs of multiple actors in AI/GenAI space

- precious resources
- must be productive from day1

Boundaries between teams is thinning more and more, they need to work as a single team to address these new challenges

Face completely new challenges like

- · Implement AI/GenAI feedback loops
- · monitor performance, fairness, etc.
- · models' security, compliance, tracing, etc.

- **Al workbenches** provide all the tools needed to develop, train and tune Al&GEnAl apps
- Al self-service catalog allows people to deploy what they need with a button click
- **NVIDIA AI Enterprise integration** allows to integrate advanced Al/GenAl services like NVDIA NeMO, NIM, etc.
- Data Science Pipelines allow to automate all the development and production deployment phases of Al/GenAl apps
- Al Model Monitoring provide deep inside of Al and GenAl models behavior and performances
- Multi-platform support allows to develop, run and manage Al/GenAl apps on any private/public cloud seamlessly, with zero code changes
- **Container's Orchestration Platform** facilitates the development and management of microservices-based Al/GenAl applications

Red Hat OpenShift Al

Red Hat OpenShift Container Platform

Red Hat AI key benefits

Accelerate time to market:

Microservices architecture significantly decrease the time to develop and deploy scalable, resilient, and adaptable applications

- Leverage catalog of ready-to-use tools for AI/GenAI training, tuning, inference
- Leverage MLOPs built-in capabilities to automate the models tuning, inference and validation loop

Improve IT Operations productivity

- Leverage MLOPs built-in capabilities to automate the setup of dev/staging or production environments
- Leverage built-in models monitoring to get deep inside of AI and GenAI models behavior and performances

Enforce data compliance and sovereignty

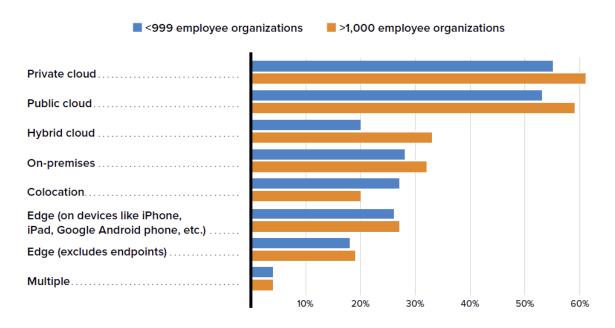
- Keep mission-critical data secured in house and under your control
- reduce the risk of data leakages
- Operational resiliency & sovereignty
- Trust and transparency

Avoid Vendor Lock-in

- Leverage Open-Source Al/GenAl frameworks and tools
- Build and Run AI/GenAI applications everywhere, on private or public clouds, with zero code changes

Meet most demanding SLOs:

OpenShift Container platform guarantees best SLOs for multitenant and large-scale AI/GenAI applications deployments


Optimize Infrastructure costs

- Leverage the support of multiple H/W vendors and different cloud providers to select the most convenient infrastructure solution
- Leverage built-in support for HCI storage as an alternative to more complex and costly SAN/NAS storage
- Choose between managed and self-managed solutions and Capex, Opex and pay-per-use models

Red Hat AI on Private Cloud Key benefits

Source: IDC's AI StrategiesView 2022

For AI/GenAI workloads, **Private Cloud is the first choice** for customers that need

- Complete control of the infrastructure
- · Data security, sovereignty and compliance
- Cost control
- Strong SLAs requirements
- · Avoid vendor lock-in
- Flexibility in the choice of AI/GenAI tools
- Run applications on central datacenter and edge locations
- Maintain some footprint on-premises

The combination of ReHat AI on a Private Cloud, can help to address many customer challenges

Agenda Market Insight, needs, challenges and opportunities How Red Hat AI can help How Kyndryl can help kyndryl.

Kyndryl helps clients to implement Al/GenAl solutions across the entire stack

Area	Description	Examples	
Application Layer	Design, build and manage Business-facing solutions that apply AI/GenAI to solve specific use cases, improve productivity, or generate value	Agentic Al	
		Al chatbots & virtual agents, Recommendation Engines, Fraud detection, etc	
		Predictive maintenance, Anomaly detection, etc	
Platform Layer	Design, build and manage the core virtualization, orchestration and Al/GenAl platforms to develop and run Al/GenAl models, workflows, and data pipelines	VMware, Red Hat, Nutanix, Suse, Azure local, AWS Outpost, Google Distributed Cloud	
		Kubernetes, Tanzu, OpenShift, Rancher, AKS, EKS, GKE	
		OpenShift AI, NVIDIA AI Enterprise, Open-source AI/GenAI frameworks	
		PyTorch, TensorFlow, Triton, NVIDIA NIM, Milvus, KubeFlow,, Ray, TrustyAl, LangChain, Haystack, CrewAl, AutoGen, etc.	
Infrastructure	Design, build and manage the underlying accelerated compute, storage, and network infrastructure that enable scalable and efficient AI operations	Hardware: Dell, HPE, Lenovo, NVIDIA, etc.	
Layer		H/W Acceleration : NVIDIA L40s/H100/H200, Bluefield, AMD Instinct, Alveo, Pensando, Intel Habana, Arc, etc	
(HW & SW)		Software: NVIDIA CUDA X, CUDA X-AI, Magnum-IO, vGPU, GPU Operator, Network operator, etc	

Strategic Benefits

Data Privacy and Security: Deployment in strictly controlled environments guarantees data sovereignty and compliance.

Cost Control: Keep the direct control of H/W cost and S/W licenses usage.

Customization: Open-source frameworks + industry standard tools enable tailored Al deployments.

Avoid vendor lockin: Containerized AI/GenAI apps built on open-source frameworks can run on any private, hybrid or public cloud platform

Kyndryl approach from Consulting to PoC and production

Provide Consulting Services for Al/GenAl adoption

- Assess AI maturity and data and infrastructure readiness
- Analyze business goals
- Prioritize Al/GenAl use cases
- Lay down AI/GenAI adoption strategy and roadmap for
 - AI/GenAI applications
 - accelerated infrastructure

Implement a Proof-of-Concept Environment

- Conduct Kyndryl Vital and PoC planning workshop
- Implement AI/genAI PoC based on agreed application scope
 - Prepare and set up data
 - Prepare PoC infrastructure
 - Develop PoC AI/GenAI applications
 - Develop Data ingestion/pipeline
 - Deploy LLM models and test
- · Analyze results and plan future strategy

Design and build Production Environment

- Design AI/GenAI applications based on use cases in scope, PoC analysis and recommendations
- Assess and size AI/GenAI infrastructure and platform
- Design and implement AI/GenAI infrastructure and platform
- Implement MLOPs/LLMops pipelines and deploy the applications

Manage Production Environment

- Provide management services for AI/GenAI applications
- Provide a Kyndryl fully managed AI/GenAI platform and infrastructure with required SLAs
- Optimize for enterprise-level LLM deployment
- Provide flexible consumption and payment models

Kyndryl services enable clients to realize faster time to value for Al/GenAl technologies, through a flexible set of services

- Customer can engage Kyndryl in any of the phases as they need, from consulting, PoC, Design, Implementation and management
- Customer can leverage Kyndryl services to help with the Al/GenAl enabled Infrastructure and platform, or with the Al/GenAl applications or both

Kyndryl services for Data and Al/GenAl Infrastructures with Red Hat OpenShift Al

AI Operations and Data Services

Kyndryl Generative Data Observability Console Kyndryl Data foundation and model framework

AI/GenAI Microservice Platform

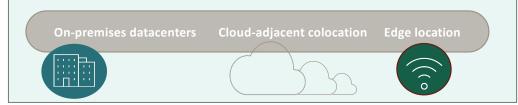
AI//GenAI and data science tools and frameworks,
Optimized Inference engines,
integration with NVIDIA AIE (i.e NIM, NeMO, etc.)
Data and retrieval-augmented generation (RAG)

Red Hat

OpenShift Al

Containers Orchestration Platform

Al-optimized Containers Orchestration platform based on industry leading Red Hat OpenShift solution


D¢LLTechnologies

Hewlett Packard Enterprise

Compute Network Storage

GPU-accelerated compute and AI-optimized storage sized for AI workloads

Data and AI operations services

- Efficient LLM operations
- Comprehensive data foundation and governance services
- Complete Data Observability Services and Console

Al/GenAl platform services

- Container orchestration based on OpenShift
- Optional HCl storage based on OpenShift Data Foundation
- Model training, inferencing, fine-tuning using OpenShift Al
- MLOps/LLMOps based on OpenShift AI data pipelines
- Optional infrastructure for retrieval-augmented-generation
- Advisory, design and build services
- Managed by client, or Managed hosting by Kyndryl in as-aservice model

Al/GenAl enabled Infrastructure services

- GPU accelerated servers based on HPE or Dell
- Infrastructure sized according to application requirements
- Flexible hosting in client, colo, edge or Kyndryl datacenter
- Flexible cloud OPEX model
- Advisory, design and build services
- Managed by client, or Managed hosting by Kyndryl in asa-service model

Manage

Build

Design

Kyndryl services for Data and Al/GenAl Infrastructures with Red Hat OpenShift Al

Secured, Dedicated, single-tenant, on-premises Platform deployment

- GPU-enabled servers, with storage and network designed to meet required LLM response time and throughput, based on Dell or HPE H/W with NVIDIA GPUs
- GPUs-enabled Red Hat OpenShift for microservice and application deployment
- · Security rich, air gapped platform ideal for regulated or private workloads

Optimized for AI - Inferencing with RAG

- Red Hat OpenShift AI used for AI/GenAI and data science tools and frameworks
- Optionally integrate NVDIA AI Enterprise services (e.g. Nemo, NIM, etc.)
- Data Science Pipelines based on embedded KubeFlow
- RAG infrastructure based on Milvus

Deployed by Kyndryl, can be managed by client or delivered as-a-service by Kyndryl

- Kyndryl Design and Build the platform in customer premise or colo provider location
- Client can manage the platform by itself or have it managed by Kyndryl (24x7x365 based on defined SLOs and KPIs for GenAl workloads)
- If managed by Kyndryl, the platform can be delivered as-a-service
- · Platform components can be delivered independently if required by customer

Different OpenShift AI deployment models

OpenShift AI Infrastructure

- RAG, Vector DB (Milvus)
- OpenShift Al
 - Inference serving runtimes
 - Training/fine-tuning frameworks
 - Al/GenAl tools/frameworks
 - Data Science Pipelines
- GPU-enabled Clusters
- OpenShift Container Platform
- OpenShift Data Foundation (optional)

H/W Infrastructure

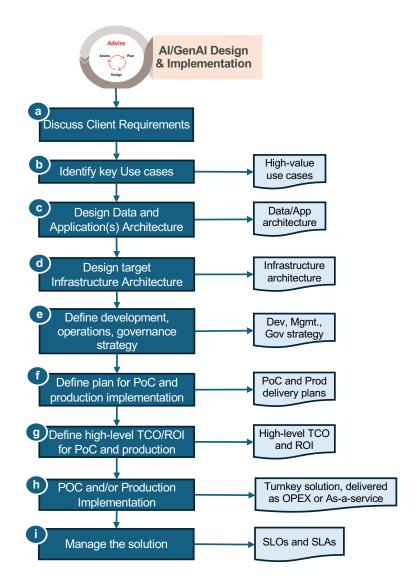
- NVIDIA GPUs
- HPF/Dell Servers

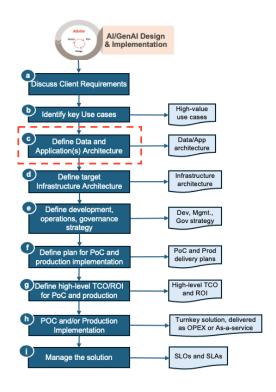
Datacenter

OpenShift Al Edge Inference

- Kserve, vLLM,OpenVINO
- GPU-enabled single node
 OpenShift or MicroShift

H/W Infrastructure

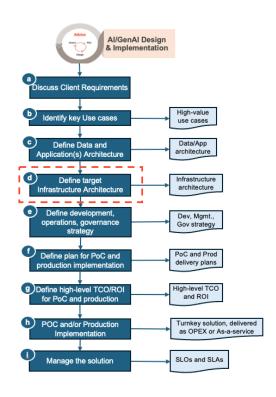

- NVIDIA GPUs
- HPE/Dell Servers


Edge

The Kyndryl approach

Kyndryl can help clients in the realization of a Private Cloud solution for Al/GenAl using an holistic approach that analyzes all the different aspects and phases of the analysis, design, implementation and management of such solution

An example – Design Data and Application(s) architecture

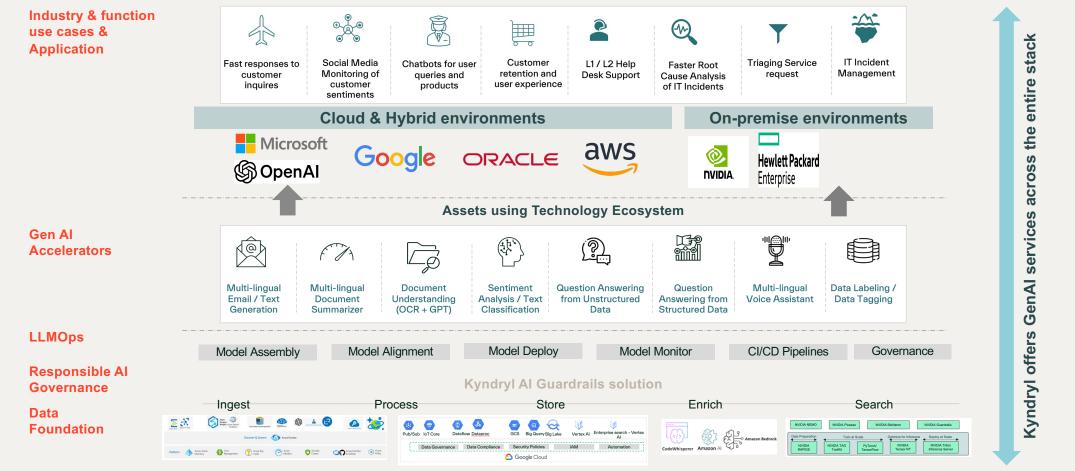

Define high level data and application(s) architectural design

- → Understand which data are used, where they originally reside, how they should be prepared and where they should be stored for the AI/GenAI applications use
- → Understand application scenario, models used, required latency/throughput, etc.
- → Pay attention to application requirements in terms of training, fine-tune, RAG, inference
- → Look for most popular applications in the same industry and search for applications blueprints, or for most common vendors/solutions in that industry
- → Create the high-level design of the application(s), including the major data flows and the MLOps/LLMOps processes

Kyndryl Reusable assets and supporting material

 Use <u>Data & Applications Architecture Patterns</u> folder where you can find Al/GenAl Applications Blueprints from Google, Azure, NVIDIA and Red Hat

An example – Design Infrastructure Architecture


Design an AI/GenAI Infrastructure architecture requires deep investigation

- Right size the infrastructure based on application requirements
 - Type of Al Models (Computer Vision / NLP/ Reinforcement learning / Deep Learning)
 - Model size (e.g. Llama-70B, Mistral-7B, Llama-13B, etc.)
 - Application requirements and architecture Training, fine-tuning, RAG, inference only?
 - Data size Number of I/O tokens, system prompts) Image resolution, Audio sample rate, Text length etc.
 - Performance objectives Time-to-first-token (TTFT), Inter-Token-Latency (ITL), E2E Latency
 - Scalability objectives Number of concurrent requests per sec/min, Output Tokens generated per sec/min
 - Model accuracy Precision used to train and evaluate the models
- GPUs how many GPUs and GPUs types,
- GPUs topology single, NVLink or GPUs Fabric
- Network and storage infrastructure Infiniband, Ethernet, 25/100/200/400GB, RoCE, GPUDirect, etc..
- Servers' configuration PCIe switches, Accelerated NICs/DPUs, CPU/RAM/DISK
- Datacenter power & cooling wattage, heat dissipation, cooling type (air/liquid), cooling capacity, etc.
- Edge Deployment Security, network, storage, etc.

Kyndryl Reusable assets and supporting material

- Al-GenAl Infrastructure Architecture patterns
- AI-GenAI Sample BOMs
- GPU Sizing guidance & tool
- Red Hat OpenShit Al Reference architecture, etc

Kyndryl AI capabilites across different Technologies

kyndryl.

26

Leverage Kyndryl expertise in the field of Al/Gen Al

Skills & Expertise

- Dedicated team of GenAI SMEs, consultants, architects and engineers certified across hyperscalers and on-prem with proven experience in GenAI
- Deep domain expertise after handling multiple customer scenarios
- Continued investments in hiring and upskilling
- 350+ Data and AI patents

Investments

- Building a CoE with Microsoft across GenAI, Data Foundations (Fabric, Purview), & Apps Modernization and Responsible AI Partner (one of 11)
- Multi-year strategic agreement -AWS Joint Innovation Factory to build industry solutions in GenAI/ML
- Joint partnership with Google focused on GenAl solutions, Al Governance & Data, SAP data & Al modernization
- Collaboration with Nvidia and Dellfor private AI/ GenAI solutions

Kyndryl as Customer 0

- Embedding GenAl in our delivery capabilities: Kyndryl Bridge – Natural Language ChatOps for querying IT / ticketing data
- Several GenAl solutions for CFO/ Solutioning organizations, such as Kyndryl IR Advisor bot to support Q&A, meeting prep, information retrieval and summary from investor reports, calls, market news

Assets

Pilots & solutions in production

- LLMOps (Large Language Model Ops) console & Platform to scale responsibly GenAl solutions & models
- GenAl assets such as: Kyndryl SRE
 Assist to speed up end2end DevOps
 automation, code modernization to
 translate code between languages
- Industry solutions, such as: Automated Quality Inspection leveraging Vision AI, Worker Safety, etc.
- Robust consulting framework, and methodologies (GenAl risk assessment, data foundations assessment framework, etc.)

- Social media sentiment analysis, personalised responses and responses to information seeking question
- Natural language queries to fetch data from database
- Issue resolution for contact centre leveraging FAQs and customer data in WhatsApp
- Q&A from large contractual documents for government entity
- ...

Questions?

Nov 2025

Connect

Grazie

linkedin.com/company/red-hat

facebook.com/redhatinc

youtube.com/user/RedHatVideos

twitter.com/RedHat

