MINIO

Building Al-Ready Infrastructure: Storage, Performance & Resilience at Scale

Murat Karslioglu

Head of Global Field Architects / Field CTOs @muratkarslioglu November 2025

Al Storage is Object Storage

Every AI Leader Uses Object Storage as its Primary Storage for Building LLMs

ANTHROP\C

Al storage is the new bottleneck.

Not GPUs. Not compute. Storage.

Object Native Advantages are Required at Al Scale



Single-Namespace Scalability

Store **raw data**, **tokenized corpora**, and **model checkpoints**, easily reaching 10s to 1,000s of petabytes, all in a single global namespace.

All leading Al/ML tools such as Hugging Face, PyTorch, TensorFlow, Ray, Kubeflow natively support S3/object storage APIs.

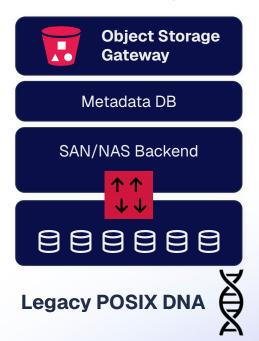
Efficiently train using thousands of GPUs with massive parallel throughput across both large and small files such as txt, JSON, parquet, audio, image, video etc.

Easily reproduce training runs and rollback models or data, via safe, fine-grained continuous data protection powered by object immutability and versioning.

Object-native storage persists data more efficiently than file storage due to its **flat namespace and software-defined** use of non-proprietary hardware.

Object-native storage has **no file system hierarchy or metadata bottlenecks** making it faster and easier to manage, automate, and monitor at Al scale.

The CSP Challenge: Cost & control barriers too high for most enterprises



Architecture Matters

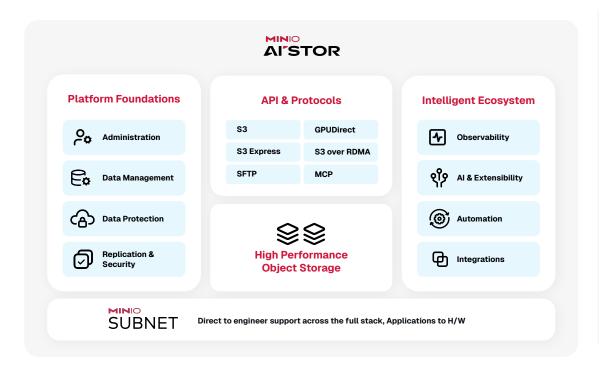
The On-Prem Choice: Legacy Retrofit vs. Object-Native

VS.

Retrofit Architecture (Legacy Enterprise)

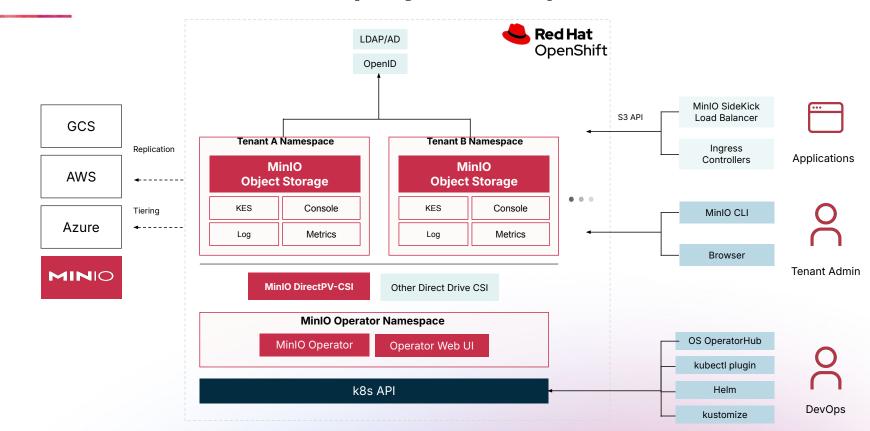
Object-Native Architecture (Al Leaders)

MinIO is Software-Defined Object Storage Leader


MinIO delivers the world's fastest and most cost-efficient AI storage at any scale

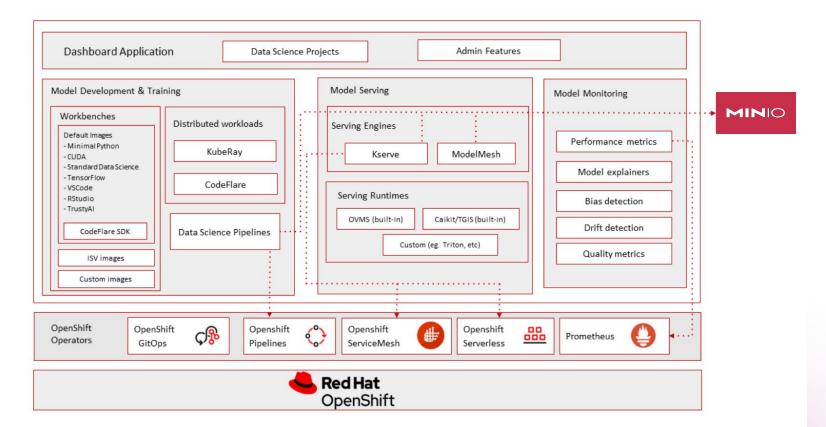
MINIO Al'STOR

Al Storage for the Data-Driven Enterprise



Why AlStor + Red Hat OpenShift = Al-Ready Platform

- Certified on OpenShift operators
- Works natively with Ray, Kubeflow, Spark on OpenShift
- Fully software-defined > runs on any OpenShift bare-metal hardware
- AIStor = S3 backbone for OpenShift Data Science (ODH)



MinIO Kubernetes Deployment (OpenShift)

Why AlStor + Red Hat OpenShift = Al-Ready Platform

AIStor Architecture is Object-Native

Strictly Consistent

Guaranteed read-after-write and list-after-write correctness. DAS O-DIRECT (direct I/O). All metadata updates are atomic and strictly serialized. No delayed propagation cache. Erasure coding with strict quorum enforcement.

Data Mobile

Batch replication for multi-cloud data movement. Strictly consistent, synchronous active-active replication. Objects, metadata, tags & locks. Common source and destination bucket names.

Single Layer. **Gateway-Free**

Simple, efficient topography helps deliver the lowest TCO. Linear, per-node scalability. No protocol gateways, translations, or overhead. No hierarchy, flat namespace. No application/OS tuning.

Inline Only

All data services are inline and high performance to eliminate complexity and variability. Object-level encryption, compression, erasure coding, replication and more.

Metadata DB-Free

Metadata embedded with objects for true scale-out. Consistent low latency regardless of file size & object count.

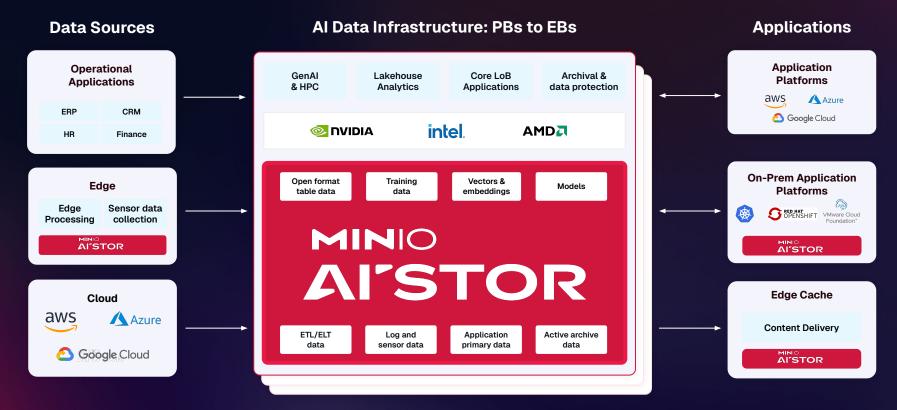
High obj/s across billions of samples, billions of embeddings.

Beyond S3

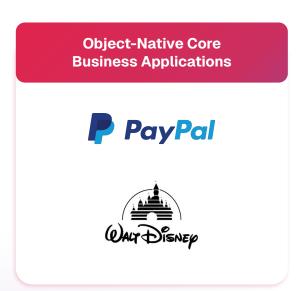
Full S3 compatibility (baseline), including S3 Express. PromptObject to talk to objects as if they were an LLM. Extension to list, stat and download contents of ZIP files in any bucket.

SIMD Accelerated

GO + assembly optimized SIMD extensions, e.g. AVX512, NEON, VSX. Speeds MD5, SHA256, Highway Hash bitrot protection, erasure coding for x86 and Arm.


Enables throughput and IOPS saturation of any storage H/W, even through H/W failure.

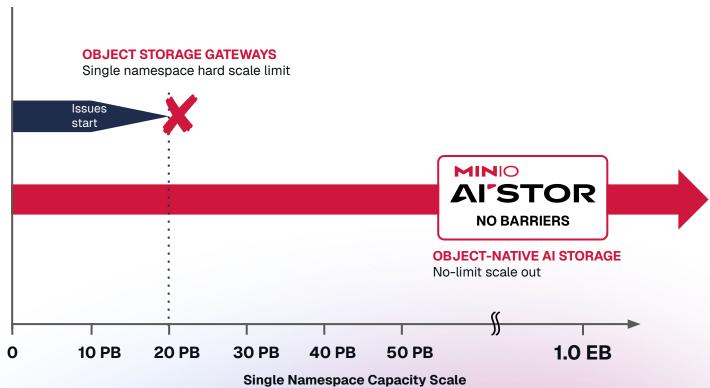
The Data Foundation for the Al-Ready Stack


AIStor Multi-Site Replication: Active/Active, Sync, Async

Production Customer Success at AI Scale

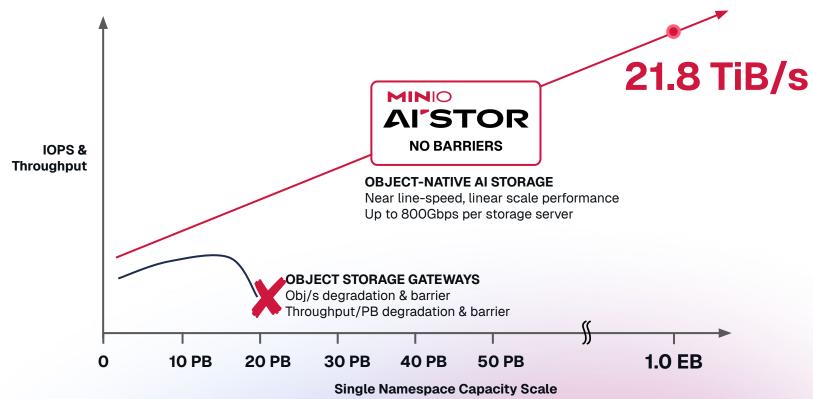
10s to 1,000s of petabytes of data, tables, vector embeddings, and models.

Production Customer Success at AI Scale

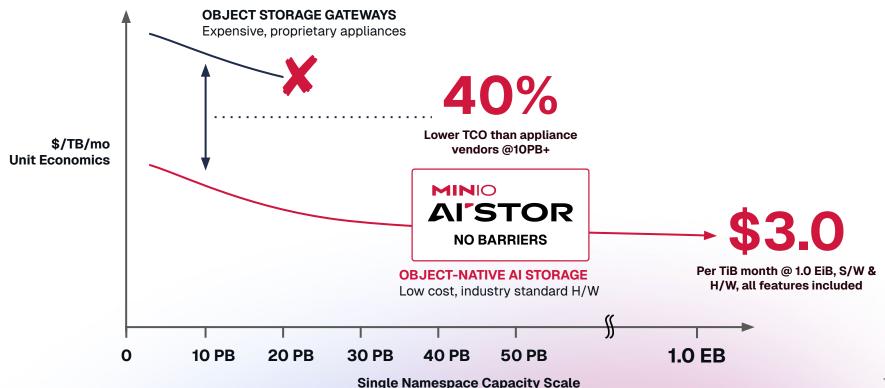


10s to 1,000s of petabytes of data, tables, vector embeddings, and models.

Why AIStor: SCALE


AlStor Capacity Scales From TBs to EBs In a Single Namespace

Why AIStor: PERFORMANCE


AlStor Performance Scales Linearly With Capacity, In a Single Namespace

Why AIStor: ECONOMICS

AlStor Delivers Industry-Leading Unit Economics at Every Scale

Why AIStor: ECOSYSTEM

AIStor's S3 API Compatibility Eliminates Friction and Risk to Speed Time to Production

OBJECT STORAGE GATEWAYS

Partial S3 API compatibility with low maturity

"It might work"

OBJECT-NATIVE AI STORAGE

Full S3 API is hardened and broadly validated

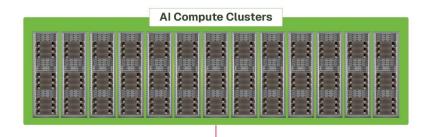
VS.

"It just works"

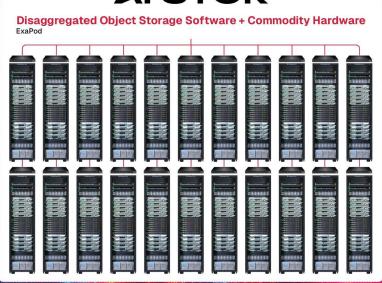
Bare Metal Reference Architecture

Storage Server Reference

	Dell	HPE	Supermicro
10	PowerEdge R7615	ProLiant DL325	ASG-1115S-NE316R
2U	B888881		
	PowerEdge R7715	ProLiant DL345	ASG-2115S-NE332R


Single Node Configuration:

- **CPU** Single AMD EPYC[™] 9655P 96 cores or higher
- RAM DDR5 RDIMM-6400 394GB or higher (12×32 GB) (1U Medium) or 786GB or higher (12×64 GB) (2U Large)
- NIC 2×400GbE or 2×100GbE
- STORAGE E3.S NVMe SSD 16x E3.S NVMe SSD 15.36TiB (1U Medium) or 32x E3.S NVMe SSD 61.44TiB (2U Large)


Example: 2U Large Config: (~9.6 PiB useable)

- 8×2U nodes (16U)
- Erasure Code Stripe Size (K+M) 8
- Erasure Code Parity (M) 3
 - Drive Failure Tolerance: 96
 - Server Failure(s) Tolerance: 3

NOTE: For sizing and throughput estimates, please see the MinIO sizing calculator

The Only Solution for Exascale AI: ExaPod

MINIO Al'STOR NO BARRIERS

1.0 EiB

Single namespace capacity

640

Storage servers

19.2TiB/s

Read throughput

\$4.6/TiB

Per month, S/W & H/W, all features included

Hardware Trends

Dense NVMe

- E3.L/E3.S/U.2 QLC > E2 (122.88-245.76+ TB) > 1PiB+ drives
- Front-service, better thermals, fewer chassis

Right-Sizing

- Spend on NICs/NVMe before extra CPUs
- EC 12:4/16:4 vs 3× replication= 2× capacity

Network First

- 2×100-800 GbE per node standard
- Non-blocking leaf-spine, jumbo frames

What to Measure

- \$/TiB-usable, watts/TiB, throughput per rack
- GPU util >90%, p99 GET latency

Thank you

@minio | min.io @muratkarslioglu

