

Distributed Inference with Red Hat Al

Scaling LLMs from experimentation to a production-grade service

Erkan Ercan

Principal Solution Architect, Red Hat https://www.linkedin.com/in/erkanercan/

Agenda

- Introduction
- What Is LLM Inference?
- vLLM as the Defacto Runtime For GenAl
- What Problem is vLLM Solving?
- Challenges in Scaling Inference Workloads
- Distributed Inference At Scale
- Questions & Answers

What are Large Language Models (LLMs)?

Neural Networks

- Recognize, Predict, and Generate text
- Trained on a <u>VERY</u> large corpuses of text
- Deduce the statistical relationships between tokens
- Can be fine-tuned

ChatGPT

Llama

Qwen

DeepSeek

Gemini

Mistral

Molmo

Phi

Nemotron

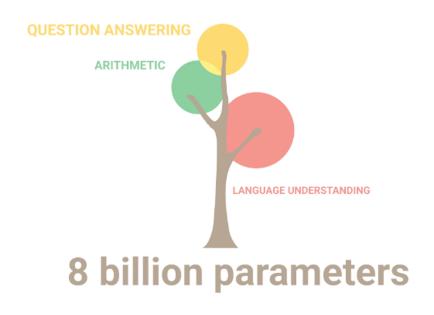
Granite

GLM

An LLM **predicts the next token**

based on its training data and statistical deduction

More parameters means more capabilities



Advantages of open weight models and serving stack

Open models play an important role in the enterprise AI landscape

Cost

- Self managed infrastructure
- 1B 1000B size match task difficulty to model

Customization

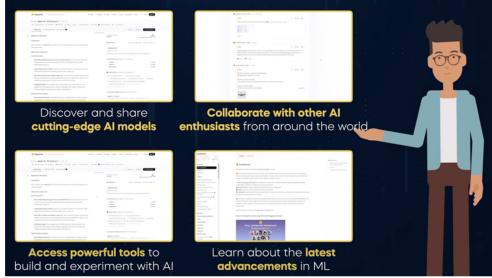
Improve accuracy and costs with task specific tuning

Control

- Model lifecycle (no changes to the model in place)
- Resources (no rate limits / API downtime)

Security

Complete data privacy (no 3rd party APIs)



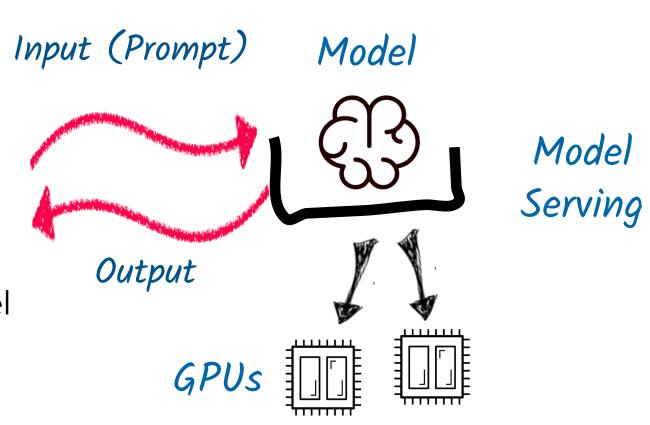
Inference (Model Serving)

Model Serving

- Run the model
- CPU/GPU
- Expose an API

Input

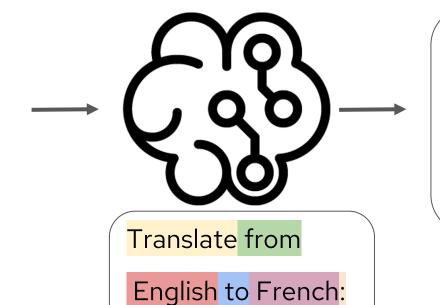
- Prompt (text)
- Instructions to give to the model
- Taming a model is hard



LLM Inference: a birds-eye view

Input prompt:

"Translate from English to French: It's nice to meet you."



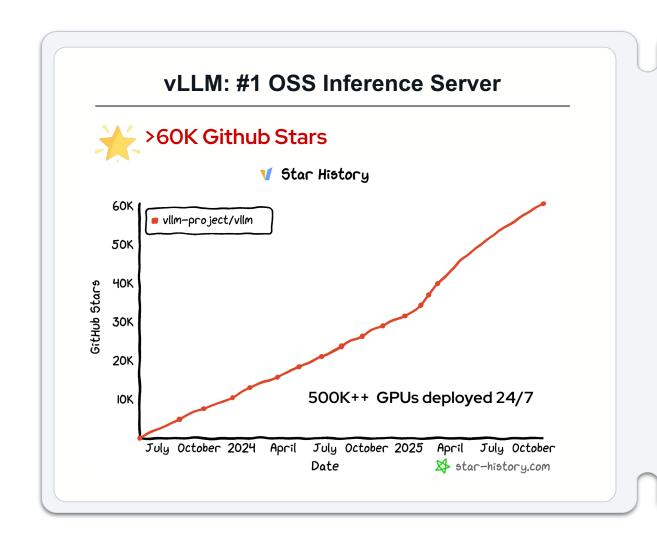
Output text:

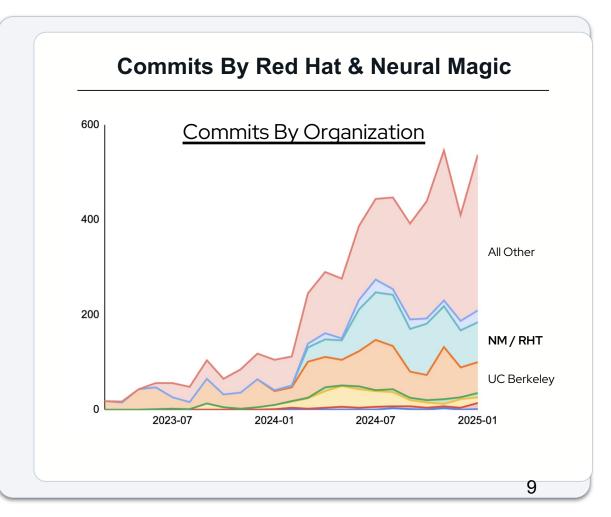
"Enchanté de faire votre connaissance"

vLLM: The De Facto Open GenAl Inference Platform

vLLM Inference Server in Red Hat Al

Neural Magic Boosts Our Community Leadership & Enterprise Support





vLLM: The De Facto Open GenAl Inference Platform

vLLM has emerged as the Linux of GenAl Inference

Phi

ron Granite

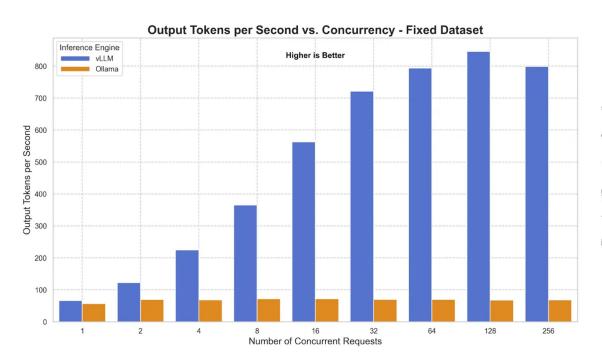
Virtual

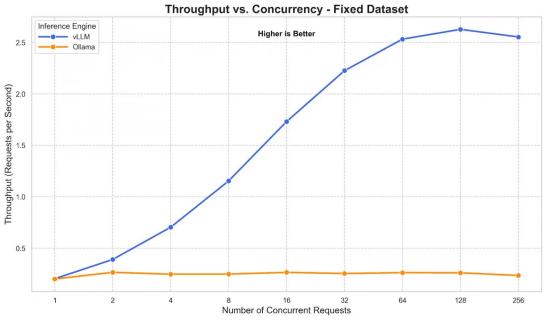
Private Cloud

Public Cloud

Edge

vLLM vs Ollama Performance Benchmark





Model: Llama3.1-8B | GPU: Nvidia A100 | Dataset: Fixed Dataset

Model: Llama3.1-8B | GPU: Nvidia A100 | Dataset: Fixed Dataset

Red Hat Al repository on Hugging Face

Collection of third-party models Google Gemma Llama Microsoft Phi Mistral, Voxtral DeepSeek Ai2 **OVIDIA** Nemotron Molmo Granite (G) OpenAI **GPT-oss** SMOLI M33B

Choice of Models

- Transformers (Dense, MOE), Multi-modal LLMs, Embeddings Models,
 Hybrid / Novel Attention, Vision
- ► Hugging Face compatible (safe tensors), OCI-compatible containers

Validated models

- ► Tested using realistic scenarios
- Assessed for performance across a range of hardware
- ▶ Done using GuideLLM benchmarking and LM Eval Harness

Optimized models

- Compressed for speed and efficiency
- Designed to run faster, use fewer resources, maintain accuracy
- Done using LLM Compressor with latest algorithms

What Problem is vLLM Solving?

What Problem is vLLM Solving?

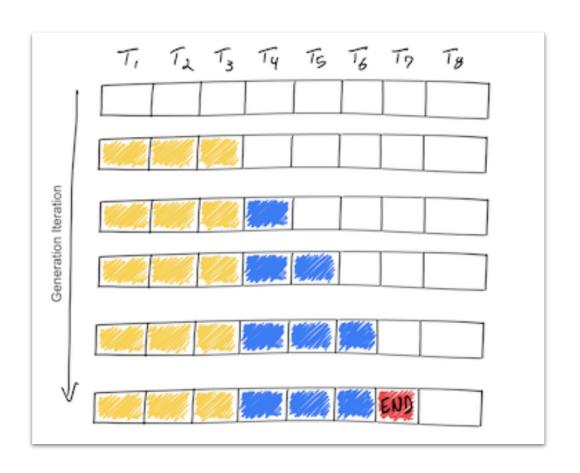
Production Inference Serving

Batch Size > 1& Data Center Hardwares

- Not the same workload as on-device inference for a single user
- How do you?
 - Efficiently schedule requests into the next forward pass?
 - Manage KV cache context and runtime memory footprint?

Why Is This A Hard Problem?

- A LLM is a function to predict the next token in a sequence
 - P(X_n | X_0 ... X_n-1)
- To generate text, we "chain together" passes through the model
 - → A single request requires multiple passes through the model
 - → A single generation request can last multiple seconds
- Key Challenge: How to handle multiple concurrent requests



Challenge 1: Batching

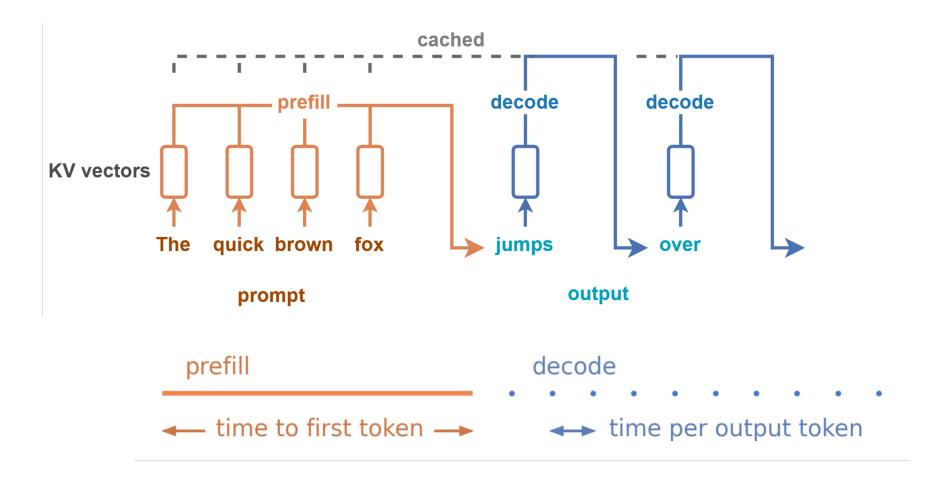
Naive/Static Batching ***

T1	. Т	2	Тз	T 4	T 5	T 6	T 7	T8	Т9	T10	T11	T12	T13	T14	T15	T16
S	S	31	S ₁	S ₁				S ₆	S ₆	S ₆	S ₆		S11	S11	S11	S11
Sz	2 S	S2	S2					S7	S7	S7			S12	S12		
Sa	S	3	S3	S ₃	S ₃	S ₃	S ₃	S8	S8				S13	S13	S13	
S	S	64	S4	S4				S9	S9	S9	S9					
S	S	S 5						S10	S10	S10	S10	S10				

Continuous Batching

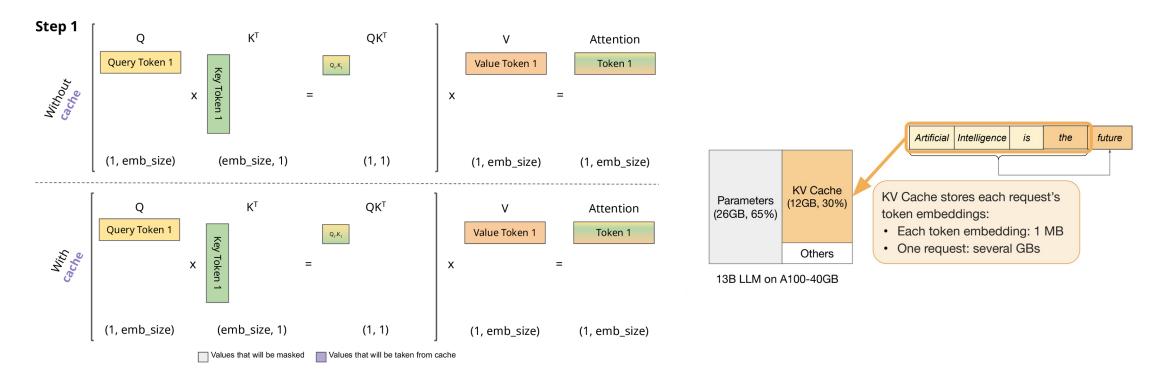
T1	T2	Тз	T4	T 5	T 6	T 7	T 8	T 9	T10	T11	T12
S_1	S ₁	S_1	S ₁	S8	S8	S10	S10	S10	S10	S10	
S ₂	S ₂	S ₂	S7	S7	S7		S11	S11	S11	S11	
S ₃	S3	S3	S ₃	S ₃	S ₃	S ₃	S12	S12			
S4	S4	S4	S4	S9	S9	S9	S9				
S ₅	S ₅	S ₆	S ₆	S ₆	S ₆			S13	S13	S13	

Challenge 2: KV Caching



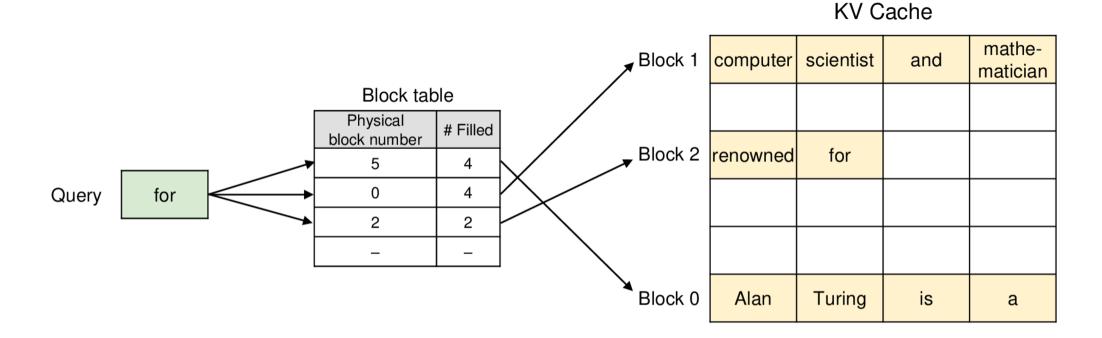
Challenge 2: KV Caching

KV Cache: Caching Key and Value vectors in self-attention saves redundant computation and accelerates decoding - *but takes up memory!*



vLLM's Original Innovation: Paged Attention

An attention algorithm that allows for storing continuous keys and values in non-contiguous memory space.



Automatic Prefix Caching

Re-use KV cache blocks across requests! Improves time-to-first-token by skipping prefill

Example: Multi-turn conversation

Prompt (round 1) Cached

Human: What's AI?

LLM Result (round 1)

LLM: Al is technology that simulates human intelligence, like Siri or Google Maps.

Prompt (round 2)

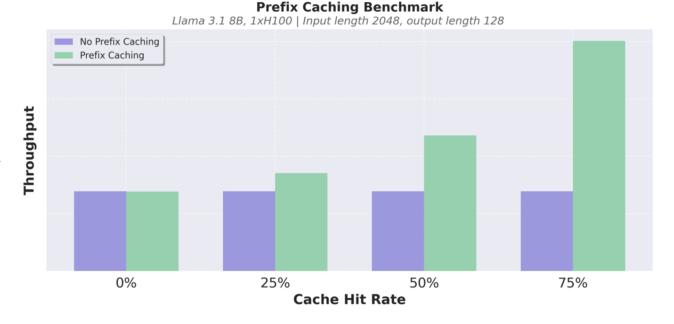
Human: What's Al?

LLM: Al is technology that simulates human intelligence, like Siri or Google Maps.

Human: Cool, thanks!

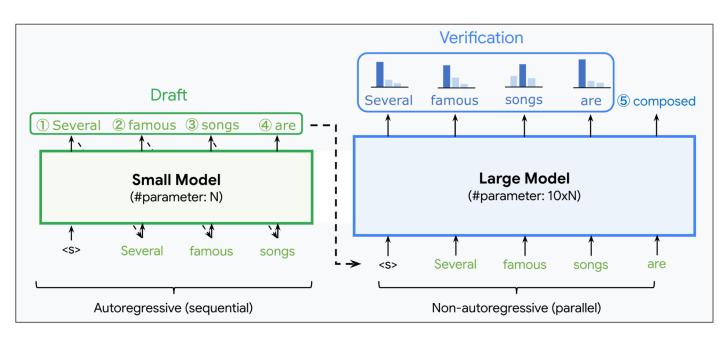
LLM Result (round 2)

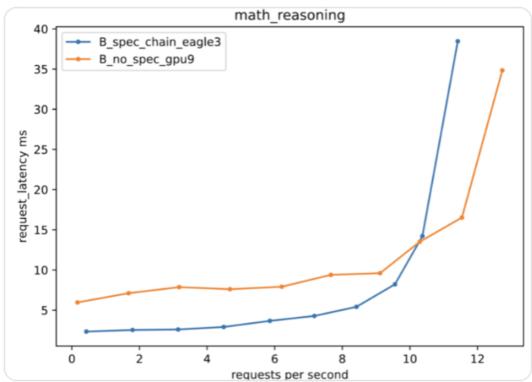
LLM: No problem!



Speculative Decoding

Accelerate decoding phase with speculation - variety of methods: ngram, draft model, EAGLE, etc.





Quantization in vLLM

Use low bit precisions (e.g., FP8, INT8, FP4) to store and compute

1. Weight Quantization

Reduced storage & memory footprints

1. Activation Quantization

 Faster linear layers with low precision tensor cores

1. KV Cache Quantization

 Reduced KV cache footprint & faster attention

vLLM Combines All Optimizations Together

Without Optimizations

Prompt	<system> You are a helpful assistant Keep your answers precise and concise. <user> Generate a description for this item:</user></system>	Prompt	<system> You are a helpful assistant Keep your answers precise and concise. <user> Generate a description for this item:</user></system>
Output		Output	

Distributed Inference At Scale

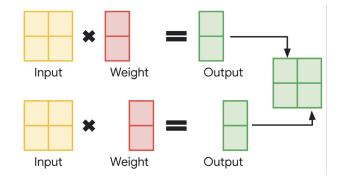
Enterprise GenAl inference platform

Holistic approach to optimize and operationalize deployment and scaling of open-source LLMs

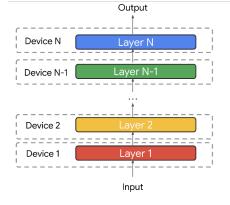


Forms of Parallelism

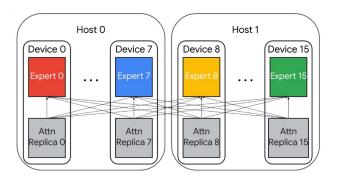
Tensor Parallelism (TP)



Pipeline Parallelism (PP)



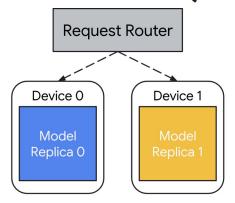
Mixed Parallelism



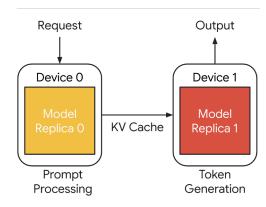
Expert Parallelism (EP)



Data Parallelism (DP)



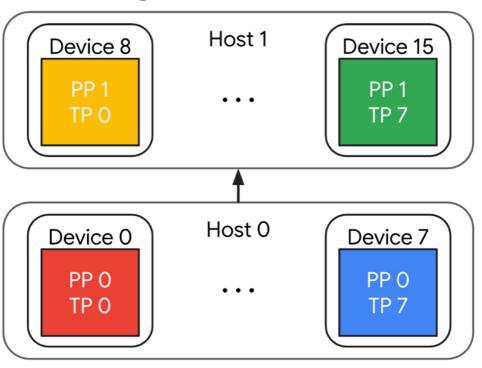
Disaggregated P/D



Example: Mix Parallelism with Red Hat Al

```
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
  annotations:
    serving.kserve.io/deploymentMode: RawDeployment
    serving.kserve.io/autoscalerClass: external
  name: vllm-llama3-405b
spec:
  predictor:
   model:
      modelFormat:
        name: vLLM
      runtime: vllm-multinode-runtime
      storageUri: pvc://model-pvc/hf/instruction_tuned
    workerSpec:
      tensorParallelSize: 8
      pipelineParallelSize: 2
    tolerations:
      - effect: NoSchedule
        key: nvidia.com/gpu
```

Tensor + Pipeline Parallelism (e.g., Llama 3 405B)



Scaling Inference

Distributed inference is essential for cost-effective GenAl at scale, but introduces unique

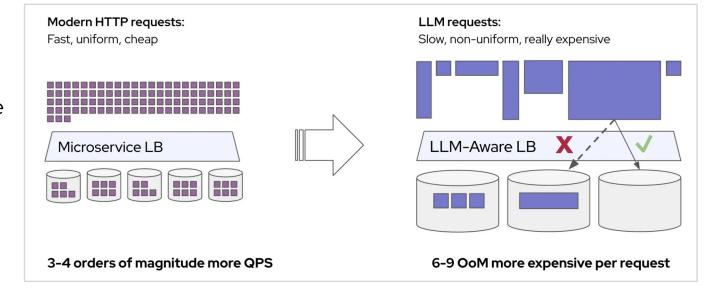
operationalization challenges

LLM inference workloads **break traditional**Kubernetes **scaling** due to variable, resourceheavy and hardware-affinity nature of requests

Ensuring SLO (throughput, TTFT, latency) while **minimizing** resource utilization and operational complexity

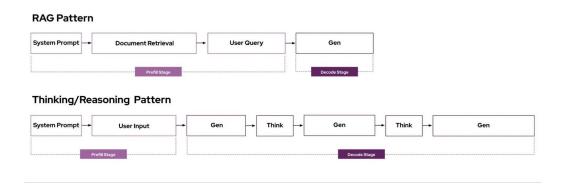
Leveraging and managing **heterogenous hardware** for better cost-efficiency

Distributed **KV cache management** as key part in inference efficiency



Why I should care... | Target use cases

Requests with significant variance in resource utilization



LLM inference requests vary in shape—different input/output token lengths cause uneven compute demands.

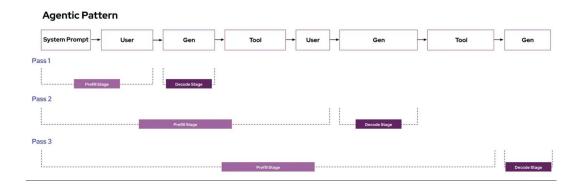
RAG: long inputs (prompt + retrieved docs), short outputs.

Reasoning: short/medium inputs, long outputs.

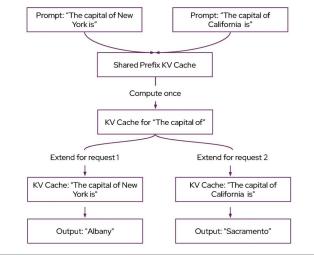
These patterns create imbalances across instances, especially during decode

Overloaded instances increase Inter-Token Latency (ITL), creating a feedback loop of worsening performance.

Routing to specific replicas with cached prior computation can achieve orders of magnitude better latency.



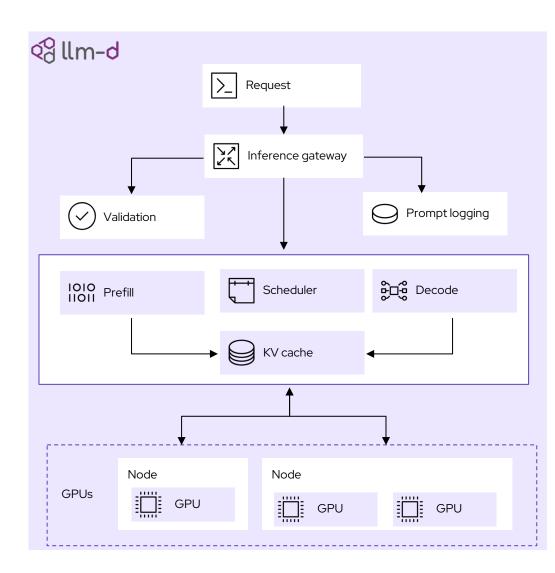
Prefix Caching



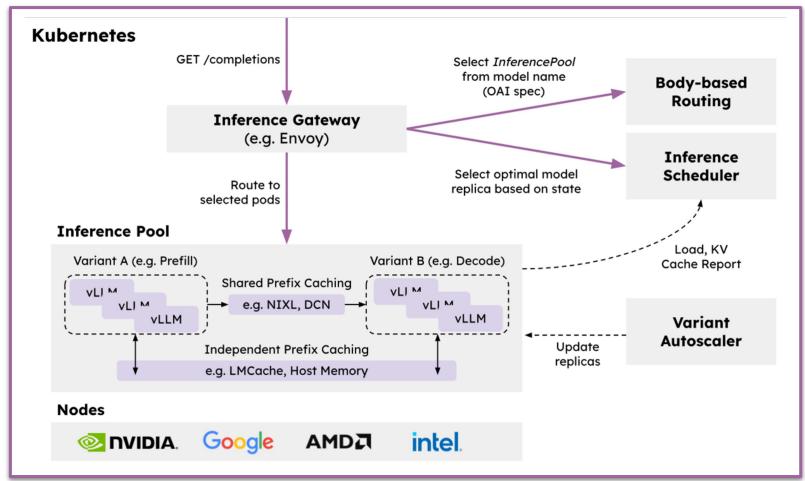
Distributed Inference with llm-d

Maximize GPU Utilization for GenAI: Distributed Inference that Delivers SLOs

- Joint open source project by Red Hat, Google, NVIDIA, AMD,
 Hugging Face, and many more
- Kubernetes-Native Architecture for simple deployment and management of GenAl models
- Optimized GenAl Inference to accelerate LLM's and MoE
- Intelligent Resource Utilization to reduce inference costs
- **High Performance and Scalability** to meet demanding Service Level Objectives (SLOs).
- Supported on Heterogeneous Hardware like NVIDIA and AMD
 GPUs (and many more to come in the future)



√LLM ♥ Ø llm-d ♥ ® kubernetes



Operationalizability

 Modular and resilient architecture with native integration into Kubernetes via Inference Gateway API

Flexibility

 Cross-platform with extensible implementations of key composable layers of the stack

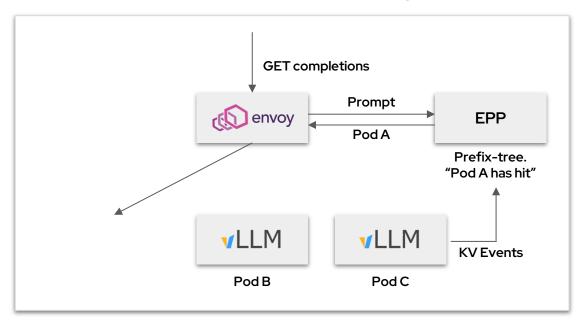
Performance

 Leverage distributed optimizations like prefix-aware routing and disaggregation to achieve the highest throughput while meeting SLOs

"Well-lit" Path: Intelligent Inference Scheduling

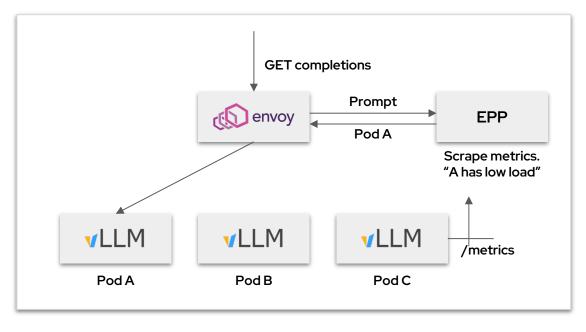
vLLM-aware load-balancing enables smarter request routing that improve SLOs

Prefix-Aware Routing



Dramatically increase prefix-cache hit rate

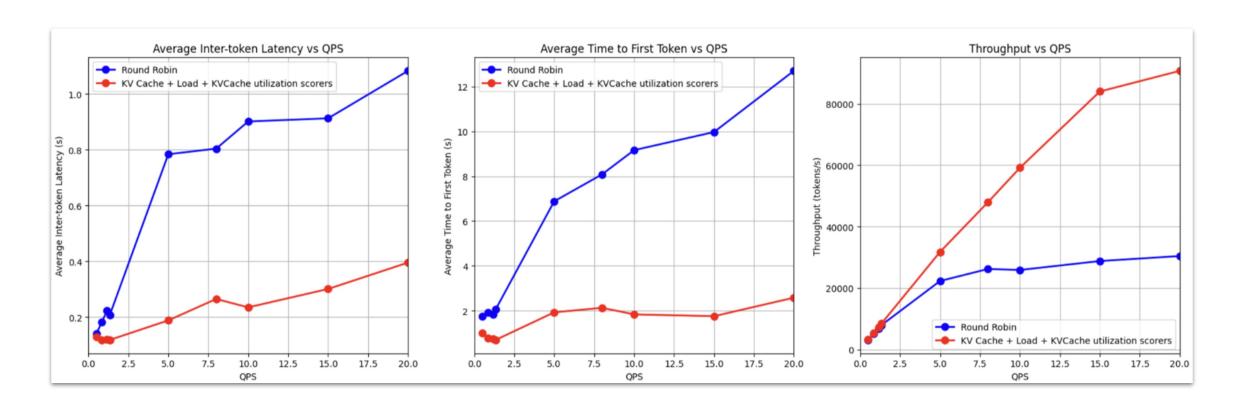
Load-Aware Routing



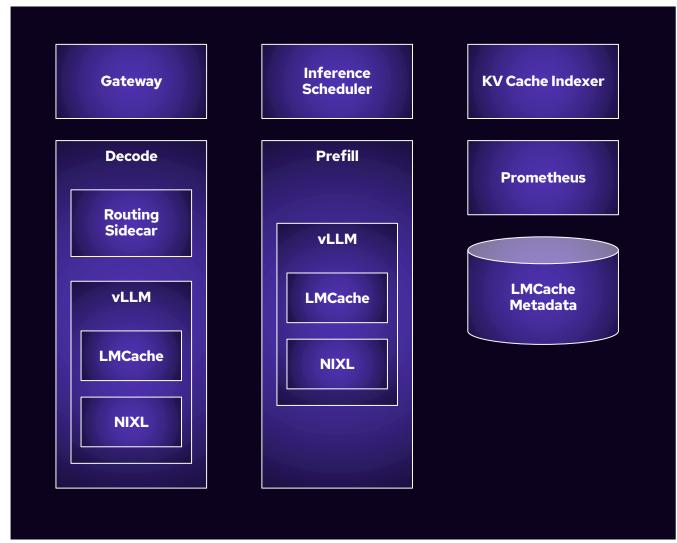
Load-balancing based on actual replica state

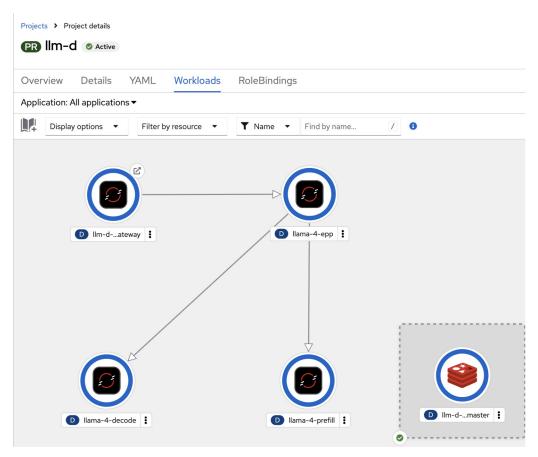
Intelligent Inference Scheduling

Inference scheduling is a no-brainer optimization which can have huge impacts on repeated prompts

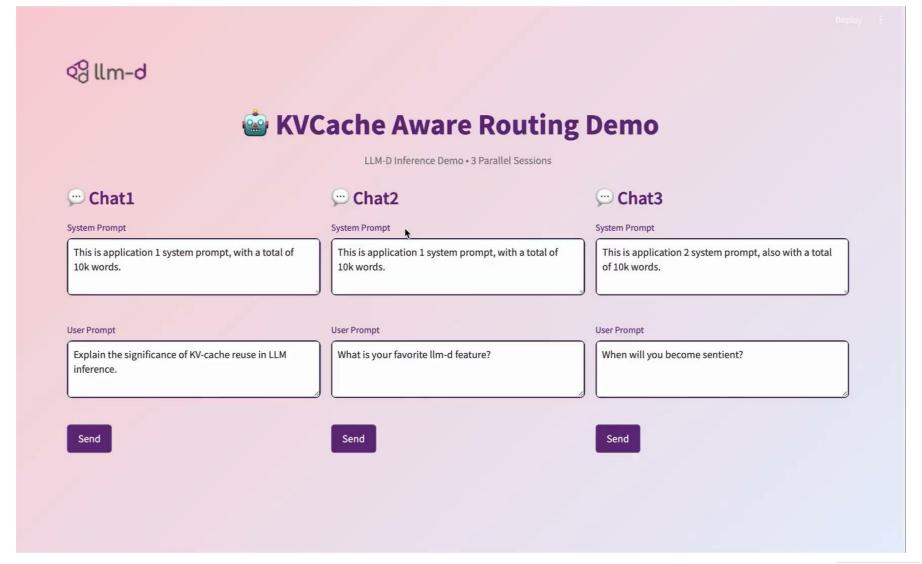


Request flow example...



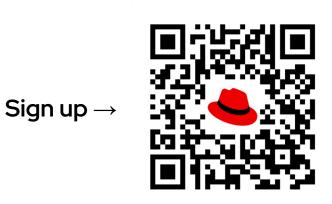


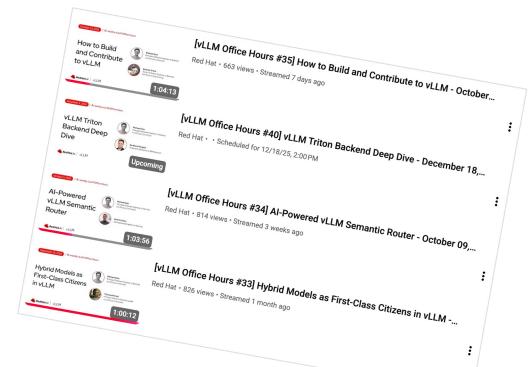
Demo



Join Bi-Weekly vLLM Office Hours [Virtual]

- Happening every other Thursday at 20:00 CET
 - · Watch on-demand immediately!
- Hear the bi-weekly vLLM update
- Give feedback & ask questions
- Deep dive into cutting-edge topics to accelerate your vLLM inference





Thank you

linkedin.com/company/red-hat

facebook.com/redhatinc

youtube.com/user/RedHatVideos

twitter.com/RedHat

